

GOING GREEN: WHERE DO WE START? • 75% electricity consumed by Commercial, Industries and Resedential Miscellaneous Commercial 5.9% 7.9% • Cost of electricity highest for commercial category. Agriculture 17.8% • Commercial tariff 40% higher than that for other categories • Industry consumes 40% of total electricity in India today and growing • 700-900 million sq.m urban space to be built every year for next decade • Commercial + Industrial sector will deploy capital if there is Rol Industrial 40.6% 25.7% · All other sectors can follow **Share of Electricity Consumption - India** Zero to Green: IIT Madras Research Park 3

IIT Madras Research Park – The Showcase

- IITM Research Park: 1.2M sq.ft Commercial Complex spread across 11.7 Acres
 - Average daily consumption 70 MWh
 - Contracted Demand 5000 kW
 - Total cost of electricity ₹12.31 per unit
 - 8 Chillers 3000 TR; 6 DG sets 1150 kVA
- Understand the in/outs of consumption →
 - How do we fix a leak if we don't know where it is?
 - Deep-data driven approach
 - Analyze consumption profile, dissect trends and deliver efficiency and savings
 - Develop → Test → Rinse → Repeat

Zero to Green: IIT Madras Research Park

Step 1: Reduce

- Greenest form of energy is the one we don't use
- Identify the needle movers
 - In Buildings: Energy used in cooling alone is 40%
- Solar Heat Gain analysis showcased our own gaps
- Inefficiencies of cooling large spaces → Technology to address the same
- Data driven approach for decision making
- Sustainable design, material, and construction should be the norm

Zero to Green: IIT Madras Research Park

1MW Wind

Total Cost

Investment

through

5

Step 2: Energy Generation → Renewable

- · Constraints: Limited space and large investment
 - Rooftop Solar typically provides only 5 10% of total requirement
- Open Access: Captive/Group-Captive
 - Smaller Investment and larger capacity
 - IITMRP today: 5 MW Solar and 2 MW Wind providing 80% power
- Regulations changing and fundamental nature of RE will come to light
 - Banking went from 12 months → 1 month → Minutes
 - Intermittency of renewables means Storage is only way to match demand and supply
- Demand Supply mismatch (Day and Month)
- Energy storage key in moving towards 100% RE

Group Captive Captive Mechanis **CAPEX Cost** 4,00,00,000 32,00,000 1,50,00,000 **Land Required**

1 MW Solar without

trackers

Total Cost

t through

Group

Zero to Green: IIT Madras Research Park

Factors

involved

Step 3: Energy Storage

- Thermal: 40% energy at IITMRP used in air-conditioning
- · IITMRP designed, developed and commissioned chilled water storage system with capacity of 300,000 ltrs
- Stores chilled water at 6°C: store anytime, use when needed
- Battery Storage: (Short duration Within a Day use)
- LTO Fast charge-discharge
- NMC/LFP Slow charge-discharge
- First of its kind indigenously developed MWh battery storage
- Is there a long-duration storage requirement?
- 60% of India's Wind generation happens across 4 months
- · Could Green Hydrogen be an option?
- Early results of Zinc-Air look promising + explore other options

Zero to Green: IIT Madras Research Park

7

Step 4: Energy Management

- · Multiple sources of energy generation + storage and varying consumption patterns
 - · Solar and Wind
 - · Three types of Storage
 - · Multitude of consumption heads
- EMS → Match demand and supply 24*7 to meet true RE requirements
- · Use case is multi-fold on daily basis
- → Time of Day pricing Peak Tariff Hour usage
- In TN today, 25% higher electricity cost between 6:00 10:00 (AM/PM)
- → Fixing the Fixed Charges
- ₹562 per kVa fixed demand charges
 - IITMRP at 5000 kVA contracted incurs ₹28L per month
- · Do we really need it?
 - In last one-year IITMRP peak touched 4700 kVA for 7 minutes
 - Shave the mountain
 - 15 20 mins per day could cost ₹5 ₹10L per month

Zero to Green: IIT Madras Research Park

Step 5: Closing the loop

- The Hot and Cold problem → Opportunity
- Air conditioners/Chillers for heating
- Heat water from Chillers at IITMRP used in cafeteria
- End of life problems Are we just shifting the goal post?
- Battery Recycling today: 95% material at 98% purity
- Solar panels, Wind Turbines and all components should follow suit

Zero to Green: IIT Madras Research Park

9

The Green Print

		Proposed Scenario with 90%
	Current Scenario	RE
Particulars	Units (kWh)	
Solar (wheeled-in)	-	5,81,250
Wind (wheeled-in)	2	5,41,437
Commercial	12,73,790	1,60,108
Diesel Generator	18,011	9005
Total	12,91,801	12,91,801
Particulars	Per unit rates (₹/ kWh)	
Solar (wheeled-in)	=	4.57
Wind (wheeled-in)	-	4.52
Commercial	8.70	8.70
Diesel Generator	31.33	31.33
Storage (Assuming 30% RE)	2	2.67
Particulars	Overall average rates (₹/ kWh)	
Consumption charges/unit	8.70	7.38
Peak Hour Consumption Cost/unit	0.64	0.48
Demand charges/unit	2.08	1.62
Tax, meter rent/unit	0.57	0.16
Avg rate without DG	11.99	9.63
Avg rate with DG	12.31	9.80
Average Monthly Cost	₹ 1,58,12,804	₹ 1,25,23,887
Estimated Monthly Savings (₹)		₹ 32.88.917

THE IMPACT

- 30 35% reduction in electricity costs
- Savings of ₹4.3 Crores in last 12 months on electricity costs
- Cut down emissions by 3920 tons of CO2
- · Approach scalable across the country
 - Readily deployable in the existing infrastructure
 - Plus Billions of sq. ft yet to be built
- As costs decline → Industrial + HIG housing can follow
- Can all commercial, Industrial and residential go GREEN?
- Mission to help accelerate shift; technology and cost ready – are you?

Zero to Green: IIT Madras Research Par

11

11

Let's work together..

Thank you!

anson@respark.iitm.ac.in

Zero to Green: IIT Madras Research Park